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W e develop a new model for studying the phenomenon of congestion in a transient en- 
vironment, focusing on the problem of aircraft landings at a busy "hub" airport. Our 

model is based on a Markov / semi-Markov treatment of changes in the weather, the principal 
source of uncertainty governing service times, together with a treatment of the arrival stream 
as time-varying but deterministic. The model is employed to compute moments of queue length 
and waiting time via a recursive algorithm. To test the model, we conduct a case study using 
traffic and capacity data for Dallas-Fort Worth International Airport. Our results show that the 
model's estimates are reasonable, though substantial data difficulties make validation difficult. 
We explore, as examples of the model's potential usefulness, two policy questions: schedule 
interference between the two principal carriers, and the likely effects of demand smoothing 
policies on queueing delays. 
(Queueinig-Tranisienit Results; Airports-Airport Conigestioni, Air Traffic Conitrol; Markov Chainis; 
Applied Stochastic Models) 

1. Introduction 
An article in The Nezw York Tinies Magazinie recently re- 
ported that the fraction of Americans dissatisfied with 
the deregulation of the airline industry has risen from 
17 percent to 36 percent over the past decade, and ac- 
cording to the legal director of the Aviation Consumer 
Action Committee, delay is the principal reason behind 
this trend (New York Times 1991). In 1986, ground 
delays at domestic airports averaged 2000 hours per 
day, the equivalent of grounding the entire fleet-250 
aircraft-of Delta Airlines at that time (Donoghue 
1986). In 1990, 21 airports in the U.S. exceeded 20,000 
hours of delay, with 12 more projected to exceed this 
total by 1997 (National Transportation Research Board 
1991). 

While much of the growth in delays has come about 
because of demand increases over the last decade, the 
development of hub-and-spoke networks has also 
played a role. Hub airports in particular are congested 
because they experience higher traffic levels than others. 

In fact, among the 11 airports with the highest number 
of reported delays in 1990, seven were hubs: Chicago 
(O'Hare), Dallas-Fort Worth, Atlanta (Hartsfield), 
Denver (Stapleton), Newark, Detroit, and San Francisco 
(National Transportation Research Board 1991). The 
main characteristic of hub operations is the presence of 
arrival and of departure "banks," i.e., groups consisting, 
in some cases, of as many as 40 flights, which are 
scheduled by an airline to take place within a short 
period of time, typically of 30 minutes or less. These 
bursts of activity often create major congestion prob- 
lems, especially under adverse weather conditions. Be- 
cause the hub is the center of operations for a carrier, 
habitually large delays can have serious adverse effects 
on system operations. Mitigating and, if possible, elim- 
inating these delays is a matter of importance to carriers, 
regulators, air traffic controllers, and passengers. 

The objective of this paper is to propose a model that 
could be used for planning purposes to assess the ex- 
pected delays on landing or takeoff at an airport, given 
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a proposed schedule of daily operations there. For the 
reasons cited above, our particular focus is on hub air- 
ports, where the unusual level of variation in arrival 
rates over the day poses a particularly challenging 
problem. However, the model is clearly applicable to 
all airports and is generalizable to other service systems 
where arrival rates and capacity levels vary significantly 
over time. Our principal contribution is the development 
of a somewhat unusual queueing model and an efficient 
algorithm for predicting delays under time-varying de- 
mand and capacity conditions. We model the weather 
(the principal source of uncertainty in service times) as 
both a Markov and a semi-Markov process to account 
for dependencies between capacity levels at successive 
time intervals. We have applied our methodology to a 
large hub, using real data with encouraging results. 

This work falls within the scope of queueing theory. 
Although the general literature for that field is vast, the 
number of works dealing with the transient and dy- 
namic behavior of queueing systems is surprisingly 
small. Indeed, fundamental to the premise of this paper 
is a body of relatively recent research that demonstrates 
convincingly the risks of approximating the behavior 
of transient and dynamic queueing systems through 
various approaches based on steady-state analysis 
(Odoni and Roth 1981, 1983; Green et al. 1991; Green 
and Kolesar 1991, 1993). Most attempts to deal explic- 
itly with dynamic and transient behavior model the ser- 
vice and arrival processes as phase-type and attempt to 
solve the resulting forward Kolmogorov equations. 
Gross and Harris (1985) present some of the competing 
methods. Most of these become computationally ex- 
pensive soon, because of the very large state spaces 
needed. Alternative approaches for solving these equa- 
tions are given by Grassmann (1977) and, more re- 
cently, by Bertsimas and Nakazato (1990, 1992) Dif- 
fusion approximation methods offer an alternative ap- 
proximate model for transient and dynamic analysis (see 
Iglehart and Whitt 1970a, b; Newell 1971; Kobayashi 
1974; Gelenbe and Mitrani 1980; Heyman and Sobel 
1982). None of these approaches seems well suited to 
the particular set of demand/ capacity conditions pres- 
ent at airports, as we explain in ?2. 

Airport capacity and queueing studies have a history 
of over 30 years. Blumstein (1960) developed the first 
model, still valid today, for determining airport capacity. 

Newell (1979) provides a good review of the factors 
that determine airport capacity, claims, as we do, that 
standard queueing approaches are inadequate for air- 
port queueing systems, and argues for a deterministic 
approach. The classical work of Koopman (1972) was 
the first to recommend the use of numerical solutions 
of differential and difference equations to develop good 
bounds on the behavior of airport queues. 

Two recent studies employ a combination of simu- 
lation and analytical tools to estimate airport delays. 
Abundo (1990) computes delays on landing by com- 
bining an M (t) / Ek ( t ) / lmodel (which she solves nu- 
merically) for the landing queue with a simulation of 
an airport's capacity profile over time. St. George (1986) 
treats the queueing processes for landings and takeoffs 
at 12 U.S. airports deterministically at several levels of 
airport capacity. His work does not address the issue of 
how delays respond to reduced capacity conditions, fo- 
cusing instead on comparing airport delays for a given 
nominal level of capacity. 

This paper is organized as follows. In ?2 we discuss 
the arrival and service operations for the landing queue 
at an airport and develop a model of capacity based on 
a semi-Markov process. In ?3 we develop an algorithmic 
approach for computing queue length and waiting time 
moments over time, using a simple recursive procedure. 
In ?4 we apply our methods to Dallas-Fort Worth Air- 
port. Using data obtained from weather observations 
taken over eight years at DFW, we explore the sensitivity 
of the model to various assumptions concerning the ar- 
rival and service processes. We also discuss validation 
using delay data obtained from the U.S. Department of 
Transportation. Section 5 follows the validation dis- 
cussion with an illustration of the model's application 
to exploring important strategic questions. We indicate 
the sensitivity of congestion delay to starting conditions 
and explore the effects of demand smoothing policies 
on queueing delay. Section 6 summarizes the main con- 
tributions of the paper. 

2. Models of Demand and Capacity 
Incoming aircraft at an airport require service at a system 
consisting of a series of three "stations": a landing run- 
way, a gate, and a takeoff runway. Traditional "steady- 
state" queueing analyses are not appropriate for this 
system because of the following characteristics: 
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(1) Time variation in arrival rate: Practically all air- 
ports and especially hub airports are subject to a highly 
time-varying ("dynamic") rate of demand. Research 
comparing transient and steady-state results for single- 
server queues (Odoni and Roth 1983, Green et al. 1991) 
suggests that, in such cases, the time necessary to reach 
"steady state" substantially exceeds the time over which 
the demand may reasonably be taken as constant. The 
implication is that models which describe only steady- 
state behavior are of very limited value. 

(2) Weather dependence of service rate: For both the 
landing and departure processes at an airport, the ser- 
vice rate ("airport capacity") depends on the number 
and geometric arrangement of the runways which can 
be used ("runway configuration") and on how much 
separation is required between successive landings and / 
or takeoffs. These factors are in turn determined pri- 
marily by weather conditions: ceiling, visibility, wind 
direction and wind speed. Thus, service rates vary over 
time as a function of weather conditions and queueing 
models that assume constant service rates are inappro- 
priate. 

(3) Interdependence of service times: On landing and 
takeoff the required separations between successive 
aircraft also depend on the type of aircraft (for example, 
six nautical miles of separation are required when a 
"heavy" aircraft is followed by a "small" one on final 
approach under "instrument flight rules," while only 
two and a half or three nautical miles are required when 
"small" is followed by "heavy"). Moreover, because 
many passengers transfer between flights, an aircraft's 
time at the gate often depends on the arrival time of 
other flights, especially at hub airports. Such compli- 
cations make the usual assumption of independent, 
identically distributed (iid) service times in typical 
queueing analyses inappropriate. 

These characteristics require that we take a new ap- 
proach to the problem. We focus on the queue for air- 
craft landings, though we note that, with only slight 
modifications, the approach is also appropriate for the 
departure queue. We consider landing aircraft as cus- 
tomers utilizing a set of runways which together con- 
stitute a single server. 

To deal with the first of the characteristics, we treat 
the demand process as deterministic at the outset. This 
choice is due to our particular interest in hub airports, 

whose main characteristic is the extreme variability of 
demand rates, not only from hour to hour but also 
within hours. For example, at Dallas/Fort Worth Air- 
port in March, 1989 (the last year before an economic 
downturn reduced traffic), the number of arrivals 
scheduled between 12:00 and 12:30 p.m. was 73, while 
the number scheduled between 12:30 and 1:00 was only 
10. Thus, the rationale behind the following Assumption 
1 is that the effects on delay of the large, "deterministic" 
variation of demand over time (due to sharply peaked 
airline schedules at hub airports) "dominates" the ef- 
fects of probabilistic perturbations of that schedule: 

ASSUMPTION 1 (DEMAND PROCESS). The airport's 
operatinzg day is miiodeled as conisistinig of K discrete tinme 
initervals, inidexed by k = 1, 2, . . . , K, each of lenigth At. 
For initerval k, the niumber of aircraft denmanidinig to lanid, 
Xk, is a kinownii conistanit. 

Note that since the demand rate is assumed constant 
within each interval, it is necessary that z\t be small, of 
the order of 15 minutes, so that the variability of de- 
mand can be fully captured. Based on this arrival as- 
sumption, the model treats each 15-minute as "service 
in bulk" according to demand and capacity; in practice, 
of course, arrival schedules contain elements of uncer- 
tainty, and queues build within individual intervals. In 
04 it will be shown that our estimates of aircraft delay 
are quite robust to changes in the assumption. 

With regard to the second characteristic noted above, 
we have modeled the airport as being in one of several 
capacity states at any given time. As weather conditions 
change, landing capacity switches from one state to an- 
other. We employ two stochastic models of capacity, 
one based on a Markov chain and the other on a semi- 
Markov process. In the most general case our assump- 
tion is as follows: 

ASSUMPTION 2 (SERVICE PROCESS). Lanidinig capacity 
at the airport durinig a giveni initerval j takes onie of a discrete 
iiunuber of values A, P2, . . .l, i for somie finite niumlber S 
of capacity states with 

Al < A2 < . . . < PS. 

The ranidonm holdinig timie (ini initervals) for a giveni state 
i, Ti, follows ani arbitrary discrete distributioni wit/i prob- 
ability m7iass funlctioni 
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Pi(k) = Pr{Ti = k}, 

the probability of a capacity gi period lastinig for precisely 
k initervals of lenigth At. Uponi exitinig a state i, the capacity 
process eniters aniother state j / i wit/h probability pij. 

We have not dealt completely with the third of the 
characteristics identified above. The Markov / semi- 
Markov model of capacity does capture weather de- 
pendencies over time; however, modeling further de- 
pendence (at the level of accounting for the types of 
aircraft involved in each pair of successive landings) 
would require a model of a far more microscopic nature 
than is needed for our purposes. Instead, we have as- 
sumed that, given that Ai is the capacity during a par- 
ticular interval, the duration of each service time in the 
interval is deterministic and equal to A71. Within any 
interval k the queue behaves like a deterministic flow 
process, with demand XA and service rate ,(k), ,u(k) tak- 
ing one of the values Al, . . . , ,As according to a semi- 
Markov process. The model does iot take an operational 
viewpoint with respect to changes in weather and ca- 
pacity. Rather, our aim is a strategic model for general 
planning purposes. 

3. Algorithmic Development 
The semi-Markov model introduced in the preceding 
section may be recast as a Markov model via an enlarged 
state space. Let the new state space be { i, n , where i 
indicates capacity equal to Ai and ni is the age-the time 
(in intervals) for which that capacity has been in effect. 
The new process is clearly Markov, with transition 
probabilities 

pji(ni) Pr((i, ni) -* (j, 1)) 

-Pr[Ti = nl I Ti ? ni]pij j#i 

(ii(ni) Pr((i, iii) -* (i, ni + 1)) 

=Pr[Ti ?n + 1lTi T?n]. (1) 

Next define the following random variables: 

Qk - Queue length at end of interval k, 

Wk - Waiting time (in intervals) at end of interval k, 

Ck - Capacity state at end of interval k, 

Ak - Age of current capacity state at end of interval k, 

Ti Random lifetime of capacity state i. 

Let 

O((, i, ni, q) E[QkIQ, = q, C1 = i, Al = ni] 

k= 1,. K, i= 1,... S, n = 1,..., M, l?k, 

q = 1, ./ qniax(k, i), (2) 
where K is the number of intervals in the day, M is a 
realistic bound on the number of periods over which 
the transition rates (1) are time-varying, and qnmax(k/ i) 
is the maximum attainable queue length at the end of 
period k, given that at that time the capacity state is i. 
The latter obeys the recursion 

qmax(k, i) = [max(qmax(k - 1, j)) + Xk -i] / (3) 

where x+ = max (x, 0). For waiting times let 

VPk(l, i, ni, q) - E[WkIQl = q, C1 = i, Al = ni], (4) 

and let the second moment analogs of (2) and (4) be 
given by (Q2(l, i, mn, q), and V 2 ( l, i, ni, q), respectively. 
The goal is to compute the quantities (Q2(l, i, mn, q), 
CWkA(l, i, ni, q), and c)W 2(l, i, mn, q). From these quantities 
one can compute the mean and variance of the queue 
length and waiting time at the end of each period. 

The following theorem for queue lengths is a direct 
consequence of previous assumptions, which imply that 
given qk-1, the length of the queue at the end of period 
k - 1, the queue length one period later is the maximum 
of 0 and the value qk-l + Xk - i, where i indexes the 
capacity of interval k. 

THEOREM 1. The fuinctioins OXk(i, i, m, q) aind k(l, 
i, ni, q) obey the recursive relationships 

Qk(l, i, m, q) 

-E Pij(m)Qk(l + 1, j1 l, (q + XI+1 - j)+) 
j?i 

+ 1ii(m)Qk(l + 1, i, m + 1, 

(q + X1- l)+) (5) 

(2k2( i,m,q 

- E 5j(m)Qk(l + 1,], 1, (q + XI+1 - Aj) ) 
j 

, 
i 

+ pii(m)Q2(l + 1, i, m + 1, 

(q + X1- )+) (6) 

with bounidary conditions Qk(k, *,*, q) = q and 
Qk(k,k,, q) = 

q2 
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For an airport queueing system, it is reasonable to 
assume that the queue is 0 at the start of the operating 
day. From (5) and (6) one may then compute the values 
Qk(O, i, m, 0) and Q'(0, i, mn, 0) for all values of i, k, 
and m and thereby obtain the expectation and variance 
of queue lengths at intervals of length At throughout 
the day, conditional on the capacity at period 0. Waiting 
time moments follow a recursion virtually identical to 
the above. The proof again follows as a direct conse- 
quence of prior assumptions. 

THEOREM 2. The functions cWk(l, i, n, q) and 
kW(1, i, mn, q) obey the recursive relation 

fVk(l, i, ni, q) 

= A pj(m)[}Vk(l + 1, j, 1, (q + XI+1 - Aj)+)] 
j?i 

+ Jii(m)6Wk(l + 1, i, mn + 1, 

(q + X1?1- i)+) (7) 

Wk( ni,, q) 

= , ij(m)[t(l + 1,], 1, (q + X1?1 - 
j?i 

+ pii(m)[cW2(l + 1, i, m + 1, 

(q + X1?1- i)+)] (8) 

for I < k. 

The complication with waiting times occurs at the 
boundary I = k. Let (a A b) denote min (a, b). Then 
the boundary condition for the first moment of the 
waiting time is given by the following theorem. 

THEOREM 3. The functions Vk(k, i, mn, q) obey the 
recursion 

'Wk(k, i, nm, q) 

= 37i(m) [(q A 1) + cWk(vk, j, 1, (q- +k) 

+ PIim)[(q~ A 

+ CWk(k, i, m + 1, (q - Xi)?)] / (9) 

where 6Wk(k, 0) 0. 
PROOF. Suppose that at the end of period k the ca- 

pacity is Ai, the age is mn, and there are q waiting aircraft. 
Consider an aircraft which arrives at this instant. Its 
expected waiting time is the sum of two components: 

E[Wkal E[W - WLV ? v 1 Y]. (10) 

W k is the part of the waiting time experienced during 
the interval (k + 1), W ' is the part experienced there- 
after, and Y denotes the conditioning information { Qk 

= q, Ck = i,Ak = ni }. Let Ck?I = j be the event that the 
capacity during the next interval is Aj. Then 

E[Wk IJ, Ck+1 = j] = min (q/lj, 1). (11) 

This follows since if the queue is reduced to 0 during 
the interval, the aircraft waits for a time q/,'j; otherwise, 
it waits for the entire interval. To obtain E[W '], note 
that after the interval has ended, any remaining waiting 
time is stochastically equivalent to the waiting time of 
an aircraft arriving one interval later to a queue of q 
- Aj, a prevailing capacity of pKj, and an age of either 1 

(if j is a new capacity) or mn + 1. Thus, 

E[W k i , CA+1 =j] = E[Wk i Qk (q -m) , 

CA= j, Ak = 1], j zi 

E[W k I, Ck+1 = i] = E[WkIQA = (q -i)+, 

Ck=i,Ak=rn+l]. (12) 

Unconditioning on Ck+1 = j and substituting into (10) 
now yields the result. D 

For the second moment of waiting time, the boun- 
dary condition is still more complicated. The appro- 
priate recursion is stated in the following corollary to 
Theorem 3. 

COROLLARY 4. The fuinctioins Wk2(k, i, ni, q) obey the 
recursive bounidary coniditioni c2W(k, i, ni, q) = 

Z pni) q A 1 

+ 2(-A 1) WA(k, j, 1, (q -j) ) 

+ C)V2(k, j, 1, (q - Aj)+) 

+ q(n[(~ A 1)2 

+ 2 A 1)WM(k, i, ni + 1, (q - 

+ c)V(k, i, n1 + 1, (q - i))] (13) 

with cWk)(k,. 0) 0. 
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PROOF. Suppose again that at the end of period k 
the capacity is ,i, the age is mn, and there are q waiting 
aircraft. As before, let Y denote the conditioning infor- 
mation. From (10), 
E[W k I Qk= q,Ck= i,Ak= =n] = E[(W'k + kWk)2] 

=E[(W ,2)+ 2W'W k + (W k) 2J] 

- ;ij(m)E[(W% ,)2+ 2W W' 

jj 
+ (Wk)2|Y, Ck?l =1j] 

= EYi, (m ) [(-A 1)2 

+ 2( qA 1E[Wk|J' Ck+l=j] 

+ E[Wk I|, Ck+1 

+pii(m)[( qA 1) + 2(-A 1)E[WkICk+l = i] 

+E[W2l,C? + E[k 1|, Ck+li]. 

The final equality is a consequence of ( 11). The result 
now follows from (12). L 

Theorems 1, 2, and 3 and Corollary 4 completely de- 
scribe an algorithmic approach ("semi-Markov algo- 
rithm") for computing first and second moments of 
queue lengths and waiting times, based on given initial 
conditions. This can be achieved with moderate com- 
putational complexity, as the next theorem indicates. 

THEOREM 5. The nmenmory requirenzent for the senmi- 
Markov algorithmn is O(SKMQmax) and the running tinme 
is O(S2K2MQmax), where S is the iiunuber of capacity states, 
K the total lunuber of timle intervals, M an upper bounid 
oni the menmory argunment nm, and Qmax - maXkqmax(k) is 
the highest attainiable queue length over all periods. 

PROOF. The number of table entries in the recursion 
is 

K 

4 X S X M X E E qmax(l) 

k=1 I<k 

Within iteration k, however, the algorithm needs only 
to store eight values at a time, (k(l, i, nm, q), (Ok(l + 1, 
i, nm, q), 'Wk(l, i, mn, q), and 'Wk(l + 1, i, nm, q) for the 

first moments, Q'(1 + 1, i, ni, q), Q'(1 + 1, i, ni, q), 
C)kV(l + 1, i, ni, q), and CkV(l + 1,i, ni, q) for the 
second. Thus since qmax(l) < Qmnax the memory require- 
ment is O(SKMQrnax). The bottleneck for the running 
time is clearly the main recursion for I < k, in which 
we calculate the table entries for I < k. Each such cal- 
culation requires 0(S) time, so the overall running time 
has complexity O(S2K2MQmnax). Lii 

Note that in the more specialized Markov case, the 
dimension ni is unnecessary. Hence the memory re- 
quirement for the Markov case is reduced to 0(SKQmax) 
and the running time to O(S2K2QmaX). 

REMARK 1. The speed of the recursive method de- 
pends on the relative sizes of K, M, and Qmax, since S 
is typically small ( 5). In the airport context, a normal 
airport operating day is at most twenty hours (K = 80 
for At = 15 minutes), and a generous upper bound on 
Qmax is 200 (including aircraft held on the ground). At 
a maximum, M is an upper bound on state holding times; 
as a practical matter, however, above a certain value of 
ni, the transition probabilities pjj(rn) tend to remain fairly 
constant, and one need only take M high enough to 
cover the part of the distribution over which they vary 
significantly. In the case study of ??4 and 5, a value of 
20 proves adequate. 

REMARK 2. The recursive approach could be used to 
obtain higher moments or even the whole distribution 
of the queue length or waiting time at any given interval. 
However, the problem of determining any given term 
Pr[Qk = q I Qo, C0, AO] has the same complexity as that 
of determining the first moment. Thus there is an ad- 
ditional factor of Qrnax in the complexity, i.e., an algo- 
rithm for the full distribution would be expected to run 
about 200 times slower than the one for the first two 
moments alone. 

REMARK 3. The recursion computes moments con- 
ditional on the starting state. A more general average 
profile may be desired in some cases and is readily ob- 
tained by averaging over all starting conditions accord- 
ing to the steady state probabilities 

r(i, ni) - Pr { state of the system 
at a random time is (i, n )}. 

For example, the unconditional mean waiting time at 
the end of interval k is given by 

WPk = E r(i, nl))Wk(O, i, ni, 0). 
1,Z11 
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REMARK 4. The algorithm treats the input stream as 
a deterministic flow served in mass at the end of the 
period. In reality, there will almost always be at least a 
small degree variation around scheduled arrival times, 
and services take place over the whole interval. In ?4 
we report results comparing the algorithm with a sim- 
ulation in which arrivals are generated according to a 
time-varying Poisson process. Such a process might de- 
scribe the actual arrival stream which results from small 
delays and the resultant uncertainties in actual arrival 
times. In cases where congestion and other sources of 
upstream delay introduce significant probabilities of 
substantially postponed arrivals, the model requires 
further adjustments. In a follow-up paper (Peterson et 
al. 1992b), we report a method for dealing with this 
type of uncertainty based on an approximate discrete 
distribution for the input parameters Xk. 

REMARK 5. The algorithm is unable to provide wait- 
ing time distributions without significant computational 
expense. However, through the first two moments one 
can obtain a useful approximation motivated by sim- 
ulation results. Briefly, these suggest an approximate 
mixed distribution for the waiting times Wk, with a non- 
zero probability of some minimum wait (usually but 
not always 0) and the remainder a continuous distri- 
bution which is approximately exponential. The pa- 
rameters of this mixed distribution may be estimated 
from the first two moments of waiting time computed 
by the algorithm. Details are reported in Peterson et al. 
(1992b), where the approximation is employed in the 
network context as part of the procedure for accounting 
for upstream delays. 

4. Model Implementation and 
Validation 

To test the plausibility of the queueing model outlined 
in the preceding two sections, we implemented it for 
the case of Dallas-Fort Worth International (DFW) Air- 
port, which ranks among the highest in the nation in 
terms of delays (National Transportation Research 
Board 1991), largely due to the high level of traffic re- 
sulting from the dual hub presence of American and 
Delta Airlines. 

4.1. Parameter Estimation 
A typical daily demand schedule is shown in Figure 1. 
Under the convention zAt = 15 minutes, flights are 

grouped according to the 15-minute interval in which 
they arrive. The peaked pattern reflects 12 American 
and 11 Delta "banks"-clusters of arrivals. 

Landing capacity at a given time depends upon the 
runway configuration in use, which in turn depends on 
wind speed, wind direction, cloud ceiling, and horizon- 
tal visibility. Considering these factors, we chose a total 
of six capacity states for DFW. Table 1 lists these six 
states together with the associated "engineered perfor- 
mance standards" (EPS )-empirical capacity values 
used by local air traffic control-in aircraft per hour. 
The abbreviations "IFR" and "VFR" stand for instru- 
ment and visual flight rules, respectively. There is a 
substantial difference between the two highest capacity 
states and all other states, due to the availability of a 
third runway in the former states. 

In practice the EPS estimates of Table 1 are considered 
unduly conservative for high-capacity configurations. 
To correct for this, we have used preliminary results of 
an ongoing study by UNISYS (Gilbo 1990) estimating 
runway capacity per hour from actual observations of 
peak periods. These put the true highest arrival capacity 
state at DFW in the range of 115 aircraft per hour instead 
of 95. Thus far, UNISYS has provided no estimates for 
other configurations, but it is plausible to expect a similar 
increase for state "E," while the two-runway configu- 
ration estimates should remain essentially unchanged. 
The reasons for this lie in the fact that under "best" 
conditions (i.e., the top two states), skilled pilots ex- 
ercising visual judgment can reduce the separation im- 
plied by the EPS estimates. 

Figure 1 Arrival Schedule at DFW for March 1989 
(sources: DOT, OAG, and DFW Airport Authority). 

45 

40 

35 

30 

; 25 

20 

15 

10 

5 

8 Ns 8 s 8 
- - 0- t- - of 

0 
- 

0 - 

time of day 

MANAGEMENT SCIENCE/VOl. 41, No. 8, August 1995 1285 



PETERSON, BERTSIMAS, AND ODONI 
Models anid Algorithlm1ls for Tranisienit Queueing Conigestioni at Airports 

Table 1 Engineered Performance Standards at DFW (Source: 
Dallas-Fort Worth Airport Authority) 

State Description Landings per Hour (EPS) 

A IFR-2 & lower 50 
B IFR-1 60 
C VFR-2, windy 66 
D VFR-1, windy 70 
E VFR-2, still 90 
F VFR-1, still 95 

Surprisingly, historical capacity data are not available 
for DFW; therefore, we estimated a historical capacity 
profile from weather data obtained from the National 
Oceanic and Atmospheric Administration (NOAA), 
mapping given sets of weather conditions to the cor- 
responding runway configurations. Simple tabulation 
of eight years of hourly observations reveals that the 
six capacities at DFW shown in Table 1 occur with quite 
different frequencies. Over the course of a year, the 
highest capacity state (configuration "F") is observed 
about 80% of the time, while IFR conditions (states "A" 
and "B") occur only about 6% of the time. Seasonal 
variability is high; accordingly, we chose a month 
(March) near the weather "median" and based the pa- 
rameter estimates on data for that month only. Config- 
uration "F" constitutes about 75% of March observa- 
tions. 

From the data we estimated the transition matrix P 
={ pij J in the semi-Markov model, as well as the holding 
time probabilities Pr [ Ti = iii]. In addition, we estimated 
the transition matrix P = {pij for the Markov model 
(i.e., the model in which capacity varies according to a 
Markov chain rather than a semi-Markov process). De- 
tails of the estimation procedure are found in Peterson 

(1992). 
The results of an initial run of the model for DFW 

data are illustrated in Figure 2, which plots the uncon- 
ditional expected waiting times 

Wk 7ri E E[WkIQo = 0, Co = i 

based on traffic estimates for March 1989 (p 0.5) and 
on a Markov capacity model with parameters drawn 
from eight years of March data. Despite the fact that 
overall capacity exceeds demand substantially, mean 
waiting time reaches 15 minutes during the busy peak 

periods. Average delays during nonpeak periods are, 
not surprisingly, close to 0. The peaked pattern of wait- 
ing times reflects the deterministic effect produced by 
high traffic concentrations at particular times of day- 
the morning American and Delta complexes, the noon 
double complex, and the 6:00 p.m. double complex. 

4.2. Examination of the Markov Hypothesis 
Recall from the earlier discussion that while the semi- 
Markov model is less restrictive than the Markov model, 
its run time is higher by a factor M, the maximum "age" 
for a given capacity. Thus a question of interest is how 
well a Markov hypothesis fits the weather observations. 
Consider the hourly observation process of the NOAA 
data. For a given capacity state i, we define a run of 
length mn to be the event that this state is observed ex- 
actly ni consecutive times. Let N(i, ni) be the num- 
ber of runs of length ni for state i, and let N(i) 
- 11l2 N(i, m) be the total number of runs for state i. 
For each i, the set of N(i, n1) values forms a histogram 
for the given holding time. Under a Markov hypothesis, 
the distribution of holding times (measured in intervals) 
should be geometric. Let Mi be a random variable rep- 
resenting the length of a run for state i, and let Pr[Mi 
= nl IMi 2 1] be the predicted distribution under a Mar- 
kov hypothesis (found by adding certain terms of the 
corresponding geometric distribution). Figure 3 com- 
pares the predicted probabilities Pr [Mi = n IMi M 2 1] 
with the observed frequencies N(i, ni)/N(i)). 

As may be seen, states "B", "C", and "D" tend to 
have very short durations, states "A" and "E" short to 
medium durations, and state "F" short to very long 

Figure 2 Expected Waiting Times at DFW Based on March Weather 
and 1989 Traffic 
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Figure 3 Examining Goodness of Fit for the Markov Model 
The solid lines indicate the observed frequencies for run lengths, while the dashed lines indicate the expected frequencies under a 
Markov chain model 

State A: 50 arrivals per hour 

0.35 

0.3 

0.25 - 

0.2- 

0 0.1 5-- 
C-4 0.1 - 

0.05 - 

0- i I I L- --i- -I) I I I i I 
1 5 9 13 17 21 25 29 

duration in hours 

State B: 60 arrivals per hour 

0.7 

0.6 

v 0.5 - 

0.1 - 

0 

1 3 5 7 9 1 1 13 

duration in hours 

State C: 66 airivals per hour 

0.6 - 

0.5 -t 

0.4 -\\ 

X 0.3- \ 

$,,0.2 -- 

0.1 -- 1%. I 

1 2 3 4 5 6 7 8 9 

duration in hours 

State D: 70 arrivals per hour 

0.5 - 

0.4 - 

u 
0.3 5 \ 

i 0.2 -- 

0.1 - 

1 3 5 7 9 11 13 15 17 19 

duration in hours 

State E: 90 arrivals per hour 

0.35 

0.3 
,= 0.25 - 
a 0.2 I 

sAO0.15 \ 

c 0.1- X 
0.05 I 

0 - 1 - I I I - i 

1 3 5 7 9 11 13 15 17 19 

duration in hours 

State F: 112 arrivals per hour 

0.12 

0.1 

0.08 

B 0.06 \ 

G0.04 -.\ 

0.02 - 

0 

1 9 17 25 33 4 1 49 

duration in hours 

MANAGEMENT SCIENCE/Vol. 41, No. 8, August 1995 1287 



PETERSON, BERTSIMAS, AND ODONI 
Models anid Algorithtmis for Tranisienit Qtuenieinig Conigestioni at Airports 

durations. In fact, the full tail of the "F" histogram ex- 
tends into the hundreds of hours, though this is not 
shown in the figure. In other words, weather at DFW 
is such that a run of highest capacity may extend to 
several days without interruption. All six distributions 
have a probability mass at 1 hour which is higher than 
that predicted by the Markov model, and all of them 
decrease more rapidly from that point on. Consequently, 
X2 tests for each state yield low levels of significance. 
Clearly, weather changes within the first hour of a ca- 
pacity state are not completely captured by a Markov 
assumption. On the other hand, the state occupancy 
probabilities 7ri predicted by the Markov model are quite 
close to those observed in practice-as indicated by the 
in Table 2. 

The last observation suggests that the model's results 
might be robust to a Markov assumption, and Figure 4 
supports this view. The figure gives mean waiting times 
averaged over initial conditions, based on the March 
1989 data. (The focus on only part of the day is made 
to facilitate faster run time for the semi-Markov model, 
which with M = 20 takes on the order of two hours on 
a DEC-3100 workstation versus five minutes for the 
Markov model.) Similar results are obtained for indi- 
vidual starting states (i.e., no averaging over the starting 
states). Evidently, differences with respect to behavior 
of the weather in the first hour of holding time are not 
significant enough to affect predicted queue lengths and 
waiting times appreciably. This fact, taken together with 
the Markov formulation's greater speed and the model's 
overall strategic (rather than operational) focus, argues 
strongly in favor of the latter formulation. Accordingly, 

Table 2 Predicted and Actual Occupancy Probabilities at Dallas-Fort 
Worth 

Occupancy Probability 

State Expected Actual 

A 3.13% 3.06% 
B 2.06% 2.05% 
C 1.01% 1.01% 
D 6.36% 6.36% 
E 11.97% 11.95% 
F 75.47% 75.58% 

Figure 4 Comparison of Predictions of Expected Waiting Times at 
DFW in March 1989 under the Markov and Semi-Markov 
Models 
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the remainder of the discussion focuses on the results 
obtained under a Markov model of capacitv. 

4.3. Examination of Arrival Process Assumptions 
The recursive formulation treats scheduled arrivals 
within a given period as if they are served all together 
at the end of the period. Of course in reality this is not 
the case, and even though scheduled arrivals are not 
distributed completely at random, such randomness 
could conceivably arise due to delays enroute. One way 
to test the assumptions of the model is to compare the 
results with those obtained under the assumption that 
arrivals follow a time-varying Poisson process (with 
each period's means equal to the scheduled number of 
arrivals). Such a model can only be solved via simu- 
lation. 

Figure 5 plots average queue lengths by period as 
predicted by the Markov model and simulation. The 
simulated queue lengths are the averages of 10,000 
(separate) simulated days with given starting capacities. 
Within each simulation, each interval's queue length is 
computed as a time average. Standard errors for these 
are on the order of 1%-6%. Estimates did not change 
appreciably in moving from n = 1000 to n = 10,000. 
Two different sets of plots are shown, corresponding to 
different initial conditions (lowest and highest). The 
effect of initial conditions, which is quite substantial, is 
discussed further in ?5. For each set of conditions, how- 
ever, the difference in predicted queue lengths is quite 
small, particularly in the case of low capacity initial 
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Figure 5 Comparison of Mean Queue Lengths Predicted by Markov 
Model and by Simulation with Poisson Input 
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driven by inadequate capacity (for brief spells) rather 
than by uncertainties in the arrival process. Overall, our 
model of Section 2 seems robust to changes in the as- 
sumptions about the arrival process. 

4.4. Comparison of Model Predictions and Delay 
Statistics 

To test the validity of the model, we may compare its 
predictions with the On Time Arrival Statistics kept by 
the U.S. Department of Transportation. These statistics 
are not ideal, however, because they do not report pre- 
cisely what is desired (landing-related queueing waits 
experienced by flights). Instead, reported delays reflect 
a variety of factors: queueing waits encountered by the 
same aircraft on other landings earlier in the day, de- 
parture congestion, flight slowdowns or speedups due 
to wind, delays due to lack of available gate space, etc. 
These drawbacks severely hamper the degree to which 
one can validate the model. Thus, the limited compar- 
ison of the model's predictions with the DOT statistics 
reported in this section should be treated with a fair 
degree of skepticism. 

The data to be compared with the predicted waiting 
times are those reported for the total lateniess per flight 

TD, = max { FTAi - AFTC, + DDi, 0 }, (14) 

where 

FIA, - actual time from departure 
to arrival for flight i, 

AFTCQ - avg. scheduled time from 

departure to arrival for flight i, 

DD. - time from scheduled to 

actual departure for flight i. 

The statistic AFTC is the average of the DOT report's 
scheduled flight times (FTC's) across all flights for a given 
OD pair (the average serving to smooth out differences 
between carriers in scheduled times). The departure 
delay DD is included to allow for the possibility of 
ground holds at the origin airport resulting from landing 
congestion. The positive part is needed in (14) because 
carriers in practice build slack into scheduled flight 
times, leading sometimes to "negative" delays. This 
practice further erodes the reliability of TDi as a measure 
of waiting time delay. 

One additional adjustment to the data is justified be- 
cause we do not want to factor spurious outliers into 
the computed averages. For example, if one flight within 
a scheduled bank is two hours late while all others are 
only 15 minutes late, the difference should clearly not 
be attributed to landing congestion. To correct for this, 
we have grouped observations by day and scheduled 
arrival time, taken group means and standard devia- 
tions, and thrown out observations more than three 
standard deviations above the mean. We have then or- 
dered the remaining observations by scheduled arrival 
time, grouped them in 15-minute intervals (recall At 
- 15), and calculated new means. The solid line of Fig- 
ure 6 gives these averages for aircraft scheduled to land 
at various times of day. For example, the average cu- 
mulative delay for an aircraft scheduled to land at 10 
a.m. is about six minutes. Note that there are gaps in 
the plot of the solid curve, reflecting the fact that at a 
few times of day there is no scheduled jet service at 
DFW (prop service is not included in the DOT num- 
bers). 

The dotted line in the figure gives the average landing 
waitinig timles predicted by the Markov model. Not sur- 
prisingly, the DOT average delays are almost uniformly 
higher than the predicted queueing delays, as they are 
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Figure 6 Predicted Waiting Times at DFW (from Queueing Model) 
Compared with Average Total Aircraft Delays from Adjusted 
DOT Statistics 
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in fact total delays. The sum of the predicted queueing 
delays over all periods is about half the sum of the actual 
total delays-250 minutes versus 540 minutes. It is 
(perhaps) encouraging that much of the discrepancy 
between the two curves occurs in mid-afternoon and 
late evening. Traffic at those times is in fact quite lozv, 

and it is very likely that lateness at those times reflects 
delays carried over from earlier portions of the day, 
probably not due to local congestion at DFW. The low- 
traffic time of 5:30 a.m. to 6:30 a.m. displays a similar 
large difference which cannot be attributed to conges- 
tion on arrival. An explanation may lie in the fact that 
these early banks are mainly arrivals from the west coast 
and Hawaii, with long flight times and late evening de- 
parture times (airlines are more likely to hold flights at 
these times of day). On balance, Figure 6 is of limited 
usefulness. Qualitatively, the fact that the tinming of the 
peaks in both curves matches fairly well is about the 
best one could hope for, given the shortcomings of the 
data. In the absence of a better validation experiment, 
one must focus more on general insights rather than on 
highly specific predictions. Given the strategic rather 
than operational nature of the overall problem, how- 
ever, that focus seems appropriate. 

5. Results and Discussion 
In this section we discuss briefly some of the implications 
of the capacity model and then provide two examples 
of the analysis could be used to explore two phenomena 

of interest at DFW: schedule interference between ad- 
jacent banks and the likely effects of demand smoothing 
policies. 

5.1. Implications of the Capacity Model 
A feature of the airport queueing problem which sets 
it apart from numerous other applications is the pres- 
ence of substantial correlation between service rates 
in successive periods. In both the Markov and semi- 
Markov formulations used for DFW, high estimates of 
self-transition probabilities (0.92 for state "A", 0.96 for 
state "F ") indicate that when the airport begins the day 
in a given capacity state, it is likely to remain in it for 
a significant length of time. This phenomenon in turn 
implies that mean queue lengths and waiting times will 
look quite different conditional on different starting 
states. Figure 7 plots two waiting time profiles based 
upon the starting states "A" (lowest capacity) and "F" 
(highest capacity). Note that waiting times in the former 
case are higher by an approximate factor of 3 throughout 
the day. Moreover, since these profiles are averages of 
sample paths, the peaks approaching 40 minutes indi- 
cate the possibility of very long delays. 

To examine the effect of correlation further, consider 
an alternative, less realistic congestion model where the 
capacities from period to period are iid and the prob- 
ability of a given state i in any period is equal to the 
steady-state probability 7ri. This change should reduce 
predicted mean waiting times, a fact which is confirmed 
by Figure 8. Note that the Markov model has only 
slightly higher estimates than the iid model for peak 

Figure 7 Capacity Correlation Means that Initial Conditions Are Im- 
portant in Determining Expected Waiting Times 
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Figure 8 Comparing Markov and iid Models Illustrates the Effects of 
Correlations in Capacity from Period to Period 
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periods-again due to the high likelihood of backlog at 
these times under any capacity conditions. However, 
during slack periods, the iid model predicts much lower 
delays, reflecting its lack of memory, i.e., its failure to 
consider sufficiently the probability of persistent low 
capacity. This failure is not shared by the Markov model, 
where the correlation is taken explicitly into account. 

5.2. Schedule Interference 
It is an interesting fact that during the busiest times of 
the day in March 1989, Delta's banks tended to follow 
closely after American's, with greater schedule slack 
(idle time) separating the Delta banks from subsequent 
American banks. This suggests that Delta might have 
encountered delays at Dallas out of proportion to its 
level of traffic, since it was more likely to suffer the 
effects of residual congestion. In Figure 9, the four 
highest delay peaks where the two carriers have arrival 
banks in close proximity (as predicted by the Markov 
model) are labeled according to which carrier's bank 
comes second. In all but the early morning peak, Delta 
follows American. The figure suggests that Delta's 
schedule position may increase its queueing delays. 

Evidence from the DOT statistics tends to confirm 
this prediction, at least for the case where banks overlap 
directly. From the DOT data we selected all reported 
flights for March 1989 with scheduled arrival times 
during one of the four periods shown in Figure 9 (num- 
bered 1-4 in Table 3). Within each bank, we grouped 
flights according to carrier and computed the average 
total delay, defined as earlier. Table 3 presents the re- 
sults. For banks 1 and 3, the second carrier in the order 

Figure 9 The Four Major Double Banks at DFW, Labeled with the 
Second Scheduled Carrier in Each Case 
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(American for bank 1, Delta for bank 3) has the higher 
delays, while for banks 2 and 4, American is higher 
despite coming first in the order. While this evidence is 
mixed, note that since in the two early morning banks 
there is still some separation between the two carriers, 
the effect on the Delta would be mitigated somewhat, 
while American's higher traffic would tend to increase 
its own queueing delays. In the case where the two 
carriers' banks actually overlap significantly (bank 3), 
Delta shows higher average delays, even with less traffic. 
Moreover, American's delays are only significantly 
higher than Delta's in the one case where it is scheduled 
second (bank 1). Overall, the data suggest that schedule 
position does play a role. 

Table 3 Comparison of Average Aircraft Delays for Delta and 
American During the Four Major Double-banks 

Bank No. of Average Total 
I.D. Carrier Arrivals Delay per Aircraft 

1 American 19 9.2 
1 Delta 15 4.5 
2 American 31 7.1 
2 Delta 13 6.2 
3 American 34 9.6 
3 Delta 19 10.4 
4 American 29 11.1 
4 Delta 22 9.4 
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Figure 10 Alternative Degrees of Smoothing for DFW Traffic 

Demand schedule at DFW for March, 1989 
45 

35 

30 
"~25 

20 
15 
10 
5 

.,0 - 

A c'4 ci 66 

time of day 

Demand with moderate smoothing 
45 

40 

35 

30 
C,' 

>l 25 

20 

15 lU 1= 

time of day 

Demand with severe smoothing 
45 
40 
35 

30 I 

R 25 I 

> 20 I 

15I 
10 
5 

0 J 

mN O 00 o N day 

time of day 

1292 MANAGEMENT SCIENCE/VOL 41, No. 8, August 1995 



PETERSON, BERTSIMAS, AND ODONI 
Models and Algorithms for Transient Queueing Congestion at Airports 

These results suggest an immediate strategic role for 
the Markov model and algorithm: evaluation of a car- 
rier's arrival schedules in terms of predicted congestion 
delays. Of course, one can take that a step higher to 
look at the overall arrival schedule for the airport, as 
the next section relates. 

5.3. Demand Smoothing 
The issue of schedule interference is related to the larger 
question of how demand "peaking" at Dallas affects 
delay. During recent years, congestion-related pricing 
of capacity has been proposed as a potential way to 
reduce delays by smoothing the demand pattern over 
the day. What effects would such smoothing produce 
at DFW? To explore this question, consider a smoothing 
policy in which there is a maximum limit L on the num- 
ber of arrivals for any 15-minute period. For periods 
which would otherwise violate the limit, extra flights 
are shifted to the nearest period in which there is room. 
The resulting schedule is a smoothed version of the 

original, with the parameter L determining the degree 
of smoothing. Naturally, we expect that for lower values 
of L there will be greater reductions in delay at increasing 
inconvenience cost (displaced flights). 

Smoothing policies for L = 28 and L = 20 arrivals per 
15-minute period are illustrated in Figure 10, which also 
reproduces the actual demand schedule for March 1989. 
The case L = 28 reduces traffic so that it never exceeds 
the estimate for highest capacity state "F". This level 
of smoothing is termed "moderate"-to the extent that 
112 aircraft per hour is a hard upper bound on landing 
capacity, it represents a rationalization of the schedule 
to reflect capacity realities. The L = 20 policy ("severe 
smoothing") goes much further, introducing excess ca- 
pacity approximately 85% of the time at Dallas. 

Figure 11 reproduces the average case congestion 
profile for March 1989, as well as the hypothetical pro- 
files of what delay would look like under the smoothed 
schedules. Improvement is dramatic during peak peri- 
ods-well over a 50% reduction in waiting time. Similar 

Figure 11 Predicted Effects of Traffic Smoothing on Waiting Times 
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reductions are not achieved for the nonpeak periods, 
but waiting times during these periods are already fairly 
small. Weighted average aircraft delays are shown in 
the second column of Table 4. In moving from no 
smoothing to severe smoothing, there is a reduction in 
weighted average delay of about 60%. This represents 
about three minutes on average, but of course much 
more than that during the peaks. More than two-thirds 
of this reduction is achieved in moving from the normal 
schedule to moderate smoothing; reduction beyond this 
level of smoothing is relatively modest. This is a con- 
sequence of the fact that high capacity prevails most of 
the time. 

The cost of the smoothing policies is difficult to assess. 
Banks with very high scheduled traffic are smoothed 
significantly and become much longer. Table 4 lists the 
percentages of flights shifted from their original periods 
under the two smoothing schemes: around 7% in the 
moderate case and around 17% in the more severe case. 
One important observation is immediate: smoothing 
policies exhibit diminishing returns and increasing costs. 
From the policy standpoint, therefore, it seems that 
moderate strategies of demand smoothing are much 
more effective at the margin than more drastic ones. 
Our model suggests that a sensible strategy for dealing 
with congestion should make this distinction. 

6. Conclusion 
In this paper we have developed a nontraditional 
queueing model in response to an important problem 
in practice: congestion at hub airports. Our approach 
explicitly models variation in airport capacity dependent 
on weather conditions and exploits the structure of that 
model to obtain an efficient algorithm. Analyses based 
on the model highlight a number of interesting features 
of the problem, especially the large amount of variability 
due to large differences between alternative sample 

Table 4 Costs and Benefits of Smoothing Policies 

Smoothing Policy Percent of Flights Shifted Average Delay (mins) 

None - 6.05 
Moderate 7.23% 3.29 
Severe 17.37% 2.43 

paths and to the serial correlation in the capacity process. 
In the realm of strategy and policy, the model points 
out the reality of interaction between carriers at a hub 
and suggests that in the case of DFW, schedule position 
can affect queueing delay. Our analysis also suggests 
that the high degree of schedule peaking at DFW is 
responsible for many of the day-to-day delays. Traffic 
smoothing policies can reduce these delays and ratio- 
nalize airlines' schedules, but smoothing beyond a cer- 
tain level is likely to create a degree of excess capacity 
with high opportunity cost for the carriers.1 
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